Медь — один из важнейших металлов, относится к I – й группе Периодической системы; порядковый номер 29; атомная масса – 63,546; плотность – 8,92 г/см 3 . температура плавления – 1083 °С; температура кипения – 2595 °С. По электро­проводности она несколько уступает лишь серебру и является главным проводниковым материалом в элект­ро- и радиотехнике, потребляющих 40…50 % всей меди. Почти во всех областях машиностроения используются медные сплавы — латуни и бронзы. Медь как легирую­щий элемент входит в состав многих алюминиевых и других сплавов.

Мировое производство меди в капиталистических странах около 6—7 млн. т, в том числе вторичной меди около 2 млн. т. В СССР выплавка меди за каждое пя­тилетие увеличивался на 30…40 %.

Медные руды. Медь встречается в природе главным образом в виде сернистых соединений CuS (ковеллин), Cu2S (халькозин) в со­ставе сульфидных руд (85…95 % запасов), реже в виде окисных соединений Сu2О (куприт), углекислых соединений СuСО3 · Сu(ОН)2 - малахит 2СuСО3 · Сu(ОН)2 - азурит и само­родной металлической меди (очень редко). Окисные и углекислые соединения трудно поддаются обогащению и перерабатываются гидрометаллургическим способом.

Наибольшее промышленное значение в СССР имеют сульфидные руды, из которых получают около 80 % всей меди. Самыми распространенными сульфидными рудами являются медный колчедан, медный блеск и др.

Все медные руды являются бедными и обычно содер­жат 1…2 %, иногда меньше 1 % меди. Пустая порода, как правило, состоит из песчаников, глины, известняка, сульфидов железа и т. п. Многие руды являются ком­плексными — полиметаллическими и содержат, кроме меди, никель, цинк, свинец и другие ценные элементы в виде окислов и соединений.

Примерно 90 % первичной меди получают пирометаллургическим способом; около 10 %—гидрометаллур­гическим способом.

Гидрометаллургический способ состоит в извлечении меди путем ее выщелачивания (например, слабыми рас­творами серной кислоты) и последующего выделения металлической меди из раствора. Этот способ, применя­емый для переработки бедных окисленных руд, не по­лучил широкого распространения в нашей промышлен­ности.

Пирометаллургический способ состоит в получении меди путем ее выплавки из медных руд. Он включает обогащение руды, ее обжиг, плавку на полупродукт — штейн, выплавку из штейна черной меди, ее рафиниро­вание, т. е. очистку от примесей (рис. 2.1).

Производство меди

Рис. 2.1. Упрощенная схема пирометаллургического производства меди

Наиболее широко для обогащения медных руд при­меняется метод флотации. Флотация основана на раз­личном смачивании водой металлсодержащих частиц и частиц пустой породы (рис. 2.2).

Производство меди

Рис. 2.2. Схема флотации:

а – принципиальная схема механической флотационной машины (вариант);

б – схема всплывания частиц; 1 – мешалка с лопастями; 2 – перегородка;

3 – схема минерализованной пены; 4 – отверстие для удаления хвосты

(пустой породы); I – зона перемешивания и аэрации.

Обогащение медных руд. Бедные медные руды под­вергают обогащению для получения концентрата, содер­жащего 10…35 % меди. При обогащении комплексных руд возможно извлечение из них и других ценных эле­ментов.

В ванну флотационной машины подают пульпу — суспензию из воды, тонкоизмельченной руды (0,05…0,5 мм) и специальных реагентов, образующих на поверхности металлсодержащих частиц пленки, не сма­чиваемые водой. В результате энергичного перемеши­вания и аэрации вокруг этих частиц возникают пузырь­ки воздуха. Они всплывают, извлекая с собой металл­содержащие частицы, и образуют на поверхности ванны слой пены. Частицы пустой породы, смачиваемые водой, не всплывают и оседают на дно ванны.

Из пены фильтруют частицы руды, сушат их и полу­чают рудный концентрат, содержащий 10…35 % меди. При переработке комплексных руд применяют селектив­ную флотацию, последовательно выделяя металлсодер­жащие частицы различных металлов. Для этого подби­рают соответствующие флотационные реагенты.

Обжиг. Рудные концентраты, достаточно богатые медью, плавят на штейн «сырыми» — без предваритель­ного обжига, что снижает потери меди (в шлаке — при плавке, унос — с пылью при обжиге); основной недоста­ток: при плавке сырых концентратов не утилизируется сернистый газ SO2, загрязняющий атмосферу. При об­жиге более бедных концентратов удаляется избыток се­ры в виде SO2, который используется для производства серной кислоты. При плавке получают достаточно богатый медью штейн, произво­дительность плавильных пе­чей увеличивается в 1,5…2 раза.

Обжиг производят в вер­тикальных многоподовых цилиндрических печах (диа­метр 6,5…7,5 м, высота 9…11 м), в которых измельчен­ные материалы постепенно перемещаются механически­ми гребками с верхнего пер­вого пода на второй — ниже расположенный, затем на третий и т. д. Необходимая температура (850 °С) обес­печивается в результате го­рения серы (CuS, Cu2S и др.). Образующийся сернистый газ SO2 направляется для производства серной кислоты.

Производительность печей невысокая — до 300 т ших­ты в сутки, безвозвратный унос меди с пылью около 0,5 %.

Производство медиНовым, прогрессивным способом является обжиг в кипящем слое (рис. 2.3).

Производство меди

Сущность этого способа состо­ит в том, что мелкоизмельченные частицы сульфидов окисляются при 600…700 °С кислородом воздуха, посту­пающего через отверстия в подине печи. Под давлением воздуха частицы обжигаемого материала находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий» («псевдоожиженный») слой. Обожженный материал «переливается» через порог пе­чи. Отходящие сернистые газы очищают от пыли и на­правляют в сернокислотное производство. При таком обжиге резко повышается интенсивность окисления; производительность в несколько раз больше, чем в много­подовых печах.

Плавка на штейн. Плавку на штейн концентрата наиболее часто проводят в пламенных печах, работаю­щих на пылевидном, жидком или газообразном топливе. Такие печи имеют длину до 40 м, ширину до 10 м, пло­щадь подины до 250 м 2 и вмещают 100 т и более пере­плавляемых материалов. В рабочем пространстве печей развивается температура 1500…1600 °С.

При плавке на подине печи постепенно скапливается расплавленный штейн — сплав, состоящий в основном из сульфида меди Cu2S и сульфида железа FeS. Он обычно содержит 20…60 % Сu, 10…60 % Fe и 20…25 % S. В расплавленном состоянии (t Пл —950…1050 °C) штейн поступает на переработку в черновую медь.

Плавку концентратов производят также в электропечах, в шахт­ных печах и другими способами. Технически совершенная плавка в электропечах (ток проходит между электродами в слое шлака) на­шла ограниченное применение из-за большого расхода электроэнергии. Медные кусковые руды с повышенным содержанием меди и серы часто подвергают медносерной плавке в вертикальных шахтных пе­чах с воздушным дутьем. Шихта состоит из руды (или брикетов), кокса и других материалов. Выплавляемый бедный штейн с 8…15 % Сu обогащают повторной плавкой до 25…4 % Сu, удаляя избыток железа. Эта плавка экономически выгодна, так как из печных газов улавливают до 90 % элементарной серы руды.

Черновую медь вы­плавляют путем продув­ки расплавленного штей­на воздухом в горизон­тальных цилиндрических конверторах (рис. 2.4) с основной футеровкой (магнезит) с массой плавки до 100 т. Конвер­тор установлен на опор­ных роликах и может по­ворачиваться в требуемое положение. Воздушное дутье подается через 40— 50 фурм, расположенных вдоль конвертора.

Через горловину конвертора заливают рас­плавленный штейн. При этом конвертор поворачивают так, чтобы не были залиты воздушные фурмы. На поверхность штейна через горловину или специальное пневматическое устройство загружают песок — флюс для ошлакования окислов железа, образующихся при про­дувке. Затем включают воздушное дутье и поворачивают конвертор в рабочее положение, когда фурмы находятся ниже уровня расплава. Плотность штейна (5г/см 3 ) зна­чительно меньше удельного веса меди (8,9 г/см 3 ). Поэто­му в процессе плавки штейн доливают несколько раз: пока не будет использована вся емкость конвертора, рассчитанная на выплавляемую медь. Продувка воздухом продолжается до 30 ч. Процесс выплавки черновой меди из штейна делится на два периода.

Производство медиПроизводство меди

В первом периоде происходит окисление FeS кис­лородом воздушного дутья по реакции

Образующаяся закись железа FeO ошлаковывается кремнеземом SiO2 флюса:

По мере необходимости образующийся железистый шлак сливают через горловину (поворачивая конвер­тор), доливают новые порции штейна, загружают флюс и продолжают продувку. К концу первого периода же­лезо удаляется почти полностью. Штейн состоит в ос­новном из Cu2S и содержит до 80 % меди.

Шлак содержит до 3 % Сu и его используют при плав­ке на штейн.

Во втором периоде создаются благоприятные усло­вия для протекания реакций

приводящих к восстановлению меди.

В результате плавки в конверторе получается черно­вая медь. Она содержит 1,5…2 % примесей (железа, ни­келя, свинца и др.) и не может быть использована для технических надобностей. Плавку меди выпускают из конвертора через горловину, разливают на разливочных машинах в слитки (штыки) или плиты и направляют на рафинирование.

Рафинирование меди — ее очистку от примесей — проводят огневым и электролитическим способом.

Огневое рафинирование ведут в пламенных печах емкостью до 400 т. Его сущность состоит в том, что цинк, олово и другие примеси легче окисляются, чем са­ма медь, и могут быть удалены из нее в виде окислов. Процесс рафинирования состоит из двух периодов — окислительного и восстановительного.

В окислительном периоде примеси частично окисляются уже при расплавлении меди. После полного расплавления для ускорения окисления медь продувают воздухом, подавая его через погруженные в жидкий ме­талл стальные трубки. Окислы некоторых примесей (SbO2, PbO, ZnO и др.) легко возгоняются и удаляются с печными газами. Другая часть примесей образует окис­лы, переходящие в шлак (FeO, Аl2Оз, Si02). Золото и серебро не окисляются и остаются растворенными в меди.

В этот период плавки происходит также и окисление меди по реакции 4Cu+O2=2Cu2O.

Задачей восстановительного периода являет­ся раскисление меди, т. е. восстановление Сu20, а так­же дегазация металла. Для его проведения окислитель­ный шлак полностью удаляют. На поверхность ванны насыпают слой древесного угля, что предохраняет ме­талл от окисления. Затем проводят так называемое дразнение меди. В расплавленный металл погружают сначала сырые, а затем сухие жерди (шесты). В результате су­хой перегонки древесины выделяются пары воды и га­зообразные углеводороды, они энергично перемешивают металл, способствуя удалению растворенных в нем газов (дразнение на плотность).

Газообразные углеводороды раскисляют медь, на­пример, по реакции 4Cu2O+CH4=8Cu+CO2+2H2O (дразнение на ковкость). Рафинированная медь содер­жит 0,3…0,6 % Sb и других вредных примесей, иногда до 0,1 % (Au+Ag).

Готовую медь выпускают из печи и разливают в слитки для прокатки или в анодные пластины для последующего электролитического рафинирования. Чистота меди после огневого рафинирования составляет 99,5 … 99,7 %.

Электролитическое рафинирование обеспечивает по­лучение наиболее чистой, высококачественной меди. Электролиз проводят в ваннах из железобетона и дере­ва, внутри футерованных листовым свинцом или винипластом. Электролитом служит раствор сернокислой ме­ди (CuSO4) и серной кислоты, нагретый до 60…65 °С, Анодами являются пластины размером 1х1 м толщиной 40…50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5…0,7 мм), изго­товленные из электролитической меди.

Аноды и катоды располагают в ванне попеременно; в одной ванне помещают до 50 анодов. Электролиз ве­дут при напряжении 2…3 В и плотности тока 100… 150 А/м 2 .

При пропускании постоянного тока аноды постепенно растворяются, медь переходит в раствор в виде ка­тионов Си 2+ . На катодах происходит разрядка катионов Cu 2+ +2e → Cu и выделяется металлическая медь.

Анодные пластины растворяются за 20…30 суток. Катоды наращивают в течение 10…15 суток до массы 70…140 кг, а затем извлекают из ванны и заменяют но­выми.

При электролизе на катоде выделяется и растворяет­ся в меди водород, вызывающий охрупчивание металла. В дальнейшем катодную медь переплавляют в плавиль­ных печах и разливают в слитки для получения листов, проволоки и т. п. При этом удаляется водород. Расход электроэнергии на 1 т катодной меди составляет 200…400 кВт · ч. Электролитическая медь имеет чистоту 99,95 %. Часть примесей оседает на дне ванны в виде шлама, из которого извлекают золото, серебро и некото­рые другие металлы.

Источники: http://studopedia.ru/8_127134_proizvodstvo-medi.html